We wanted to find a way to manipulate or correct the over representation

One such idea was to add DKK1 to the maturation medium. DKK1 is a member of the DKK family that competitively binds to LRP. When bound to LRP it prevents LRP from interacting with FZD4 which is needed along with Frizzled to bind to WNT; thus inhibiting the WNT pathway. When added to the maturation medium the abundance of DVL1 decreased. By manipulating WNT signaling pathway related transcripts by competitive Gomisin-D inhibition it appears as though IVM oocytes are more like their in vivo produced counterparts. In addition, there was a clear increase in maturation percentage of oocytes that are matured in the presence of 200 mM DKK1 compared to control oocytes. Subsequent development of the DKK1 treated embryos to the blastocyst stage was not significant; however, the increase in total cell number lends to the belief that adding DKK1 may be encouraging the production of higher quality oocytes. While the increase in the number of nuclei represents an advancement, the number of nuclei in blastocysts produced in vivo is still far greater than the 30 or so nuclei reported here. Clearly, more work needs to be done to improve the quality of the oocyte maturation, fertilization, and embryo culture systems. The importance of the WNT signaling pathway during oocyte maturation appears to be similar in species ranging from zebrafish to rhesus Evodiamine monkeys. While our direction of inquiry was toward the canonical signaling pathway because of the change in abundance of transcripts, it is possible that DKK1 may activate a non-canonical pathway as well as the active planar cell polarity pathway; generally the result of activation of this pathway is a calcium release that could act in the oocyte. It is possible that a calcium signal could alter message or protein abundance during maturation. Since calcium signaling is integral to sperm signaling at fertilization, it is not clear if there would be an advantage to calcium release in the oocyte prior to fertilization. It is of interest to note that the Illumina sequencing and the real time PCR apparently did not have the same sensitivity. For example, Illumina sequencing did not detect a difference between maturation conditions for HSP90AA1, MRPS36, PHDX or UBAP2, while real time PCR detected a difference for each message. While this observation may appear incongruous, a more serious concern would be raised if both methods detected a difference and those differences were in a different direction, e.g. the abundance was higher via real time PCR and lower in the Illumina sequencing dataset. Another pathway that was over-represented in both the in vitro and in vivo matured oocytes was for ubiquitin mediated proteolysis. At first glance this observation appears incongruent. However closer examination shows that different transcripts are represented in each pathway. For example, both protein inhibitor of activated STAT3 and PIAS4 are represented as part of the ubiquitin mediated proteolysis and both are higher in IVM oocytes, while PIAS2 is higher in the in vivo matured oocytes. Since PIAS4 is also a repressor of WNT it might imply that the IVM oocyte is a empting to compensate for inadequate culture conditions by upregulating or stabilizing message for PIAS4.