Model in the context of acute inflammation was assessed by comparing its predictions with experimental from treated with LPS

The purpose of this study was to: 1) assess the complex interaction of cytokines in the liver and the circulation during early progression of the heat-induced SIRS; 2) gain insight into molecular mechanism that may serve as future therapeutic targets for HS patients; 3) analyze the correlation of organ mRNA accumulation and circulating levels of cytokines; 4) determine whether the TNFR KO responses in the liver and the circulation are altered due to differences in heating and cooling or represent a direct effect of the absence of TNF signaling. Moreover, we provide a unique modeling framework that supports identification of the role of different cytokine signaling pathways using three in silico experiments that can be used to guide further in vivo experiments. Specifically, we examined the response to the exposure to a more severe heat insult, the injection of a dose of LPS, and the knockout of IL-10R. Hill functions and mass action kinetics were used to build an ODEs model that was calibrated using a set of genomic and proteomic data by means of global optimization. AbMole Nortriptyline Despite different factors, as blood volume changes due to dehydration, could influence the value of the model parameters, these effects were considered negligible and all the parameters were considered invariant during the experiment. The model was validated using an independent set of data from TNFR KO mice. For both WT and TNFR KO, the model fits the liver qPCR data within the precision of the experimental data; however, for some of the cytokine receptors there is no combination of parameters that accurately fit the liver and plasma data simultaneously since the circulating levels are elevated while the liver mRNA remains unchanged. The deficiencies in the model fit with respect to these soluble cytokine receptors led to this relevant conclusion: molecules newly transcribed and translated in the liver are unlikely to be the primary sources of sIL6R, sTNF-RI, and sTNF-RII in the circulation during HS. Since the model was built based on this hypothesis, this fitting mismatch can only be overcome by changing the model structure and including other sources of circulating cytokines. Although changes of clearance and/or degradation rates during HS could eventually explain this divergence, the most plausible hypothesis is that other organs/cell types, which we plan to integrate into a more comprehensive model in the future, are also contributing to the circulating cytokine milieu. As we move forward with this modeling effort, these insights will be critically important for us to identify the sources of circulating cytokines and potential therapeutic targets that can be tested physiologically in our mouse model. Moreover, these findings motivate the development of a multi-modular model by systematic incorporation of other relevant peripheral organs, such as the spleen and the brain, and ultimately the entire body. For some of the species, changes in liver mRNA accumulation are not reflected in the circulating protein levels. Although our computational model is able to capture these dynamics, the low values estimated for the translation/transport parameters associated with these cytokines suggest that the mRNA is not consistently translated into proteins, the proteins generated in the liver are not extensively released into the blood stream, and/or they present a long delay not captured within the time frame of our experimental protocol. To discriminate between these scenarios, studies on protein AbMole Pamidronate disodium pentahydrate translation including liver protein concentration assays and protein tagging should be performed.